Varshney RK, Roorkiwal M, Sun S, Bajaj P, Chitikineni A, Thudi M, Singh NP, Du X, Upadhyaya HD, Khan AW, Wang Y, Garg V, Fan G, Cowling WA, Crossa J, Gentzbittel L, Voss-Fels KP, Valluri VK, Sinha P, Singh VK, Ben C, Rathore A, Punna R, Singh MK, Tar'an B, Bharadwaj C, Yasin M, Pithia MS, Singh S, Soren KR, Kudapa H, Jarquín D, Cubry P, Hickey LT, Dixit GP, Thuillet AC, Hamwieh A, Kumar S, Deokar AA, Chaturvedi SK, Francis A, Howard R, Chattopadhyay D, Edwards D, Lyons E, Vigouroux Y, Hayes BJ, von Wettberg E, Datta SK, Yang H, Nguyen HT, Wang J, Siddique KHM, Mohapatra T, Bennetzen JL, Xu X, Liu X. A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature. 2021 Nov;599(7886):622-627. doi: 10.1038/s41586-021-04066-1. Epub 2021 Nov 10. Erratum in: Nature. 2022 Apr;604(7905):E12. PMID: 34759320; PMCID: PMC8612933.
Gasanov, M., Merkulov, D., Nikitin, A., Matveev, S., Stasenko, N., Petrovskaia, A., Pukalchik, M., Oseledets, I., 2021. A New Multi-objective Approach to Optimize Irrigation Using a Crop Simulation Model and Weather History, in: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (Eds.), Computational Science – ICCS 2021, Lecture Notes in Computer Science. Springer International Publishing, Cham, pp. 75–88.
https://doi.org/10.1007/978-3-030-77970-2_7Illarionova, S., Nesteruk, S., Shadrin, D., Ignatiev, V., Pukalchik, M., Oseledets, I., 2021. MixChannel: Advanced Augmentation for Multispectral Satellite Images. Remote Sensing 13, 2181.
https://doi.org/10.3390/rs13112181Nesteruk, S., Shadrin, D., Pukalchik, M., Somov, A., Zeidler, C., Zabel, P., Schubert, D., 2021. Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case. IEEE Sensors J. 1–1.
https://doi.org/10.1109/JSEN.2021.3050084Shadrin, D., Nikitin, A., Tregubova, P., Terekhova, V., Jana, R., Matveev, S., Pukalchik, M., 2021. An Automated Approach to Groundwater Quality Monitoring—Geospatial Mapping Based on Combined Application of Gaussian Process Regression and Bayesian Information Criterion. Water 13, 400.
https://doi.org/10.3390/w13040400Stasenko, N., Chernova, E., Shadrin, D., Ovchinnikov, G., Krivolapov, I., Pukalchik, M., 2021. Deep Learning for improving the storage process: Accurate and automatic segmentation of spoiled areas on apples, in: 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Presented at the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), IEEE, Glasgow, United Kingdom, pp. 1–6.
https://doi.org/10.1109/I2MTC50364.2021.9460071Vypirailenko, D., Kiseleva, E., Shadrin, D., Pukalchik, M., 2021. Deep learning techniques for enhancement of weeds growth classification, in: 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Presented at the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), IEEE, Glasgow, United Kingdom, pp. 1–6.
https://doi.org/10.1109/I2MTC50364.2021.9459976Yudina, E., Petrovskaia, A., Shadrin, D., Tregubova, P., Chernova, E., Pukalchik, M., Oseledets, I., 2021. Optimization of Water Quality Monitoring Networks Using Metaheuristic Approaches: Moscow Region Use Case. Water 13, 888.
https://doi.org/10.3390/w13070888Chaouachi, M., Marzouk, T., Jallouli, S., Elkahoui, S., Gentzbittel, L., Ben, C., & Djébali, N. (2021). Activity assessment of tomato endophytic bacteria bioactive compounds for the postharvest biocontrol of Botrytis cinerea.
Postharvest Biology and Technology,
172, 111389.